- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Shahriyar, Shaikh Akib (2)
-
Wright, Matthew (2)
-
Barton, Armon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 26, 2026
-
Shahriyar, Shaikh Akib; Wright, Matthew (, Proceedings of the 1st Workshop on Security Implications of Deepfakes and Cheapfakes)Deepfake videos are getting better in quality and can be used for dangerous disinformation campaigns. The pressing need to detect these videos has motivated researchers to develop different types of detection models. Among them, the models that utilize temporal information (i.e., sequence-based models) are more effective at detection than the ones that only detect intra-frame discrepancies. Recent work has shown that the latter detection models can be fooled with adversarial examples, leveraging the rich literature on crafting adversarial (still) images. It is less clear, however, how well these attacks will work on sequence-based models that operate on information taken over multiple frames. In this paper, we explore the effectiveness of the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner 𝐿2-norm attack to fool sequence-based deepfake detector models in both the white-box and black-box settings. The experimental results show that the attacks are effective with a maximum success rate of 99.72% and 67.14% in the white-box and black-box attack scenarios, respectively. This highlights the importance of developing more robust sequence-based deepfake detectors and opens up directions for future research.more » « less
An official website of the United States government
